

A319599


Numbers k such that k mod (2, 3, 4, ... , i+1) = (d_i, d_i1, ..., d_1), where d_1, d_2, ..., d_i are the digits of k, with MSD(k) = d_1 and LSD(k) = d_i.


0



0, 1, 10, 20, 1101, 1121, 11311, 31101, 40210, 340210, 4620020, 5431101, 7211311, 12040210, 24120020, 151651121, 165631101, 1135531101, 8084220020, 9117311311, 894105331101
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..20.


EXAMPLE

a(11) = 5431101 because:
5431101 mod 2 = 1, 5431101 mod 3 = 0, 5431101 mod 4 = 1,
5431101 mod 5 = 1, 5431101 mod 6 = 3, 5431101 mod 7 = 4,
5431101 mod 8 = 5.


MAPLE

P:=proc(q) local a, i, j, n, ok; print(0); print(1); for n from 1 to q do
for i from 0 to 1 do a:=10*n+i; ok:=1; for j from 1 to ilog10(a)+1 do
if (a mod 10)<>((10*n+i) mod (j+1)) then ok:=0; break; else
a:=trunc(a/10); fi; od; if ok=1 then print(10*n+i); break; fi;
od; od; end: P(10^12);


CROSSREFS

Cf. A266181, A284815.
Sequence in context: A018990 A280882 A335802 * A160479 A085222 A085221
Adjacent sequences: A319596 A319597 A319598 * A319600 A319601 A319602


KEYWORD

nonn,base,more


AUTHOR

Paolo P. Lava, Sep 24 2018


STATUS

approved



